COURSE OVERVIEW:
Math 7 Accelerated compacts half of the grade 7 Common Core State Standards and all of the grade 8 Common Core State Standards into a one-year course. Students who successfully complete Math 7 Accelerated will take Algebra 1 in the eighth grade.

The seventh grade mathematics standards are about (1) developing understanding of and applying proportional relationships; (2) working with expressions and linear equations; (3) working with two- and three-dimensional shapes to solve problems involving area, surface area, and volume; and (4) drawing inferences about populations based on samples.

The eighth grade mathematics standards are about (1) formulating and reasoning about expressions and equations and solving linear equations and systems of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem.

EXPECTED OUTCOMES
Students are expected to perform at a proficient level on a variety of tasks and assessments addressing the Common Core Standards for Mathematical Practice and the Common Core State Standards addressed in Math 7 Accelerated. Levels of proficiency are defined near the end of this course outline under Performance Criteria.

Common Core State Standards for Mathematical Practice (SMP)
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Common Core State Standards for Mathematical Content (CCSS-M)

Ratios and Proportional Relationships 7.RP
7.RP.A Analyze proportional relationships and use them to solve real-world and mathematical problems.
7.RP.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction \(\frac{1/2}{1/4} \) miles per hour, equivalently 2 miles per hour.

7.RP.2 Recognize and represent proportional relationships between quantities.
 a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
 b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
 c. Represent proportional relationships by equations. For example, if total cost \(t \) is proportional to the number \(n \) of items purchased at a constant price \(p \), the relationship between the total cost and the number of items can be expressed as \(t = pn \).
 d. Explain what a point \((x, y) \) on the graph of a proportional relationship means in terms of the situation, with special attention to the points \((0, 0) \) and \((1, r) \) where \(r \) is the unit rate.

7.RP.3 Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

The Number System 7.NS

7.NS.A Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
 a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
 b. Understand \(p + q \) as the number located a distance \(|q| \) from \(p \), in the positive or negative direction depending on whether \(q \) is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
 c. Understand subtraction of rational numbers as adding the additive inverse, \(p - q = p + (-q) \). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
 d. Apply properties of operations as strategies to add and subtract rational numbers.

7.NS.2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
 a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as \((-1)(-1) = 1 \) and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
 b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If \(p \) and \(q \) are integers, then \(-(p/q) = (-p)/q = p/(-q) \). Interpret quotients of rational numbers by describing real-world contexts.
 c. Apply properties of operations as strategies to multiply and divide rational numbers.
 d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.

7.NS.3 Solve real-world and mathematical problems involving the four operations with rational numbers.¹

¹ Computations with rational numbers extend the rules for manipulating fractions to complex fractions.
Expressions and Equations 7.EE

7.EE.A Use properties of operations to generate equivalent expressions.

7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

7.EE.2 Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, \(a + 0.05a = 1.05a \) means that “increase by 5%” is the same as “multiply by 1.05.”

7.EE.B Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

7.EE.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

7.EE.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form \(px + q = r \) and \(p(x + q) = r \), where \(p, q, \) and \(r \) are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

b. Solve word problems leading to inequalities of the form \(px + q > r \) or \(px + q < r \), where \(p, q, \) and \(r \) are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.

Geometry 7.G

7.G.B Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

7.G.4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

7.G.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

7.G.6 Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

Statistics and Probability 7.SP

7.SP.A Use random sampling to draw inferences about a population.

7.SP.1 Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

7.SP.2 Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a
book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

7.SP.B Draw informal comparative inferences about two populations.

7.SP.3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.

7.SP.4 Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.

7.SP.C Investigate chance processes and develop, use, and evaluate probability models.

7.SP.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

7.SP.6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

7.SP.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
 a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
 b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

7.SP.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
 a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
 b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space which compose the event.
 c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

The Number System 8.NS

8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers.

8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., \(\pi^2 \)). For example, by truncating the decimal expansion of \(\sqrt{2} \), show that \(\sqrt{2} \) is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Expressions and Equations

8.EE A Work with radicals and integer exponents.
8.EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions.
 For example, $3^2 \times 3^{-5} = 3^{-3} = 1/3^3 = 1/27$.

8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.

8.EE.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^8 and the population of the world as 7×10^9, and determine that the world population is more than 20 times larger.

8.EE.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

8.EE.B Understand the connections between proportional relationships, lines, and linear equations.
8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

8.EE.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b.

8.EE.C Analyze and solve linear equations and pairs of simultaneous linear equations.
8.EE.7 Solve linear equations in one variable.
 a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).
 b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

8.EE.8 Analyze and solve pairs of simultaneous linear equations.
 a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
 b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6.
 c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Functions

8.F A Define, evaluate, and compare functions.
8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

8.F.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

2 Function notation is not required in the Grade 8 standards.
8.F.3 Interpret the equation \(y = mx + b \) as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function \(A = s^2 \) giving the area of a square as a function of its side length is not linear because its graph contains the points \((1,1), (2,4)\) and \((3,9)\), which are not on a straight line.

8.F.B Use functions to model relationships between quantities.

8.F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two \((x, y)\) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.F.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Geometry

8.G

8.G.A Understand congruence and similarity using physical models, transparencies, or geometry software.

8.G.1 Verify experimentally the properties of rotations, reflections, and translations:
 a. Lines are taken to lines, and line segments to line segments of the same length.
 b. Angles are taken to angles of the same measure.
 c. Parallel lines are taken to parallel lines.

8.G.2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.

8.G.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.

8.G.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.

8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.

8.G.B Understand and apply the Pythagorean Theorem.

8.G.6 Explain a proof of the Pythagorean Theorem and its converse.

8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

8.G.C Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

8.G.9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Statistics and Probability

8.SP

8.SP.A Investigate patterns of association in bivariate data.

8.SP.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

8.SP.2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

8.SP.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
8.SP.4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?

EXPECTED INTEGRATED OUTCOMES
(From the California Career Technical Education Model Curriculum Standards, adopted by the California State Board of Education in January, 2013)

Students are also expected to proficiently apply common skills that are relevant across curriculum areas and career pathways.

Standards for Career Ready Practice (CR)

1. Apply appropriate technical skills and academic knowledge. Career-ready individuals readily access and use the knowledge and skills acquired through experience and education. They make connections between abstract concepts with real-world applications and recognize the value of academic preparation for solving problems, communicating with others, calculating measures, and performing other work-related practices.

2. Communicate clearly, effectively, and with reason. Career-ready individuals communicate thoughts, ideas, and action plans with clarity, using written, verbal, electronic, and/or visual methods. They are skilled at interacting with others: they are active listeners who speak clearly and with purpose, and they are comfortable with terminology that is common to workplace environments. Career-ready individuals consider the audience for their communication and prepare accordingly to ensure the desired outcome.

3. Develop an education and career plan aligned with personal goals. Career-ready individuals take personal ownership of their educational and career goals and manage their individual plan to attain these goals. They recognize the value of each step in the educational and experiential process, and they understand that nearly all career paths require ongoing education and experience to adapt to practices, procedures, and expectations of an ever-changing work environment. They seek counselors, mentors, and other experts to assist in the planning and execution of education and career plans.

4. Apply technology to enhance productivity. Career-ready individuals find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring and using new technology. They understand the inherent risks - personal and organizational - of technology applications, and they take actions to prevent or mitigate these risks.

5. Utilize critical thinking to make sense of problems and persevere in solving them. Career-ready individuals recognize problems in the workplace, understand the nature of the problems, and devise effective plans to solve the problems. They thoughtfully investigate the root cause of a problem prior to introducing solutions. They carefully consider options to solve a problem and, once agreed upon, follow through to ensure the problem is resolved.

6. Practice personal health and understand financial literacy. Career-ready individuals understand the relationship between personal health and workplace performance. They contribute to their personal well-being through a healthy diet, regular exercise, and mental health activities. Career-ready individuals also understand that financial literacy leads to a secure future that enables career success.
7. **Act as a responsible citizen in the workplace and the community.**
Career-ready individuals understand the obligations and responsibilities of being a member of a community and demonstrate this understanding every day through their interactions with others. They are aware of the impacts of their decisions on others and the environment around them, and they think about the short-term and long-term consequences of their actions. They are reliable and consistent in going beyond minimum expectations and in participating in activities that serve the greater good.

8. **Model integrity, ethical leadership, and effective management.**
Career-ready individuals consistently act in ways that align with personal and community-held ideals and principles. They employ ethical behaviors and actions that positively influence others. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the direction and actions of a team or organization, and they recognize the short-term and long-term effects that management’s actions and attitudes can have on productivity, morale, and organizational culture.

9. **Work productively in teams while integrating cultural and global competence.**
Career-ready individuals contribute positively to every team, as both team leaders and team members. To avoid barriers to productive and positive interaction, they apply an awareness of cultural differences. They interact effectively and sensitively with all members of the team and find ways to increase the engagement and contribution of other members.

10. **Demonstrate creativity and innovation.**
Career-ready individuals recommend ideas that solve problems in new and different ways and contribute to the improvement of the organization. They consider unconventional ideas and suggestions by others as solutions to issues, tasks, or problems. They discern which ideas and suggestions may have the greatest value. They seek new methods, practices, and ideas from a variety of sources and apply those ideas to their own workplace practices.

11. **Employ valid and reliable research strategies.**
Career-ready individuals employ research practices to plan and carry out investigations, create solutions, and keep abreast of the most current findings related to workplace environments and practices. They use a reliable research process to search for new information and confirm the validity of sources when considering the use and adoption of external information or practices.

12. **Understand the environmental, social, and economic impacts of decisions.**
Career-ready individuals understand the interrelated nature of their actions and regularly make decisions that positively impact other people, organizations, the workplace, and the environment. They are aware of and utilize new technologies, understandings, procedures, and materials and adhere to regulations affecting the nature of their work. They are cognizant of impacts on the social condition, environment, workplace, and profitability of the organization.

COURSE CONTENT AND SUGGESTED TIME ALLOTMENT:
Content sequencing, activities, and time allocations are only suggestions and may be adjusted to suit school site curriculum plans, available materials, and student needs.

<table>
<thead>
<tr>
<th>Unit 1: Equations and Inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration: 24 days</td>
</tr>
</tbody>
</table>

Description:
The course begins in **Unit 1** with students extending their understanding of solving linear equations in one variable to solving equations with variables on both sides of the equal sign. Students analyze and solve linear
equations in one variable with one solution, infinitely many solutions, or no solutions. Students will extend their knowledge of equations into solving two-step inequalities.

Required Assignment:
Solving Linear Equations in One Variable
http://map.mathshell.org/lessons.php?unit=8240&collection=8
This lesson assesses how well students are able to solve linear equations in one variable with rational number coefficients, collect like terms, expand expressions using the distributive property, and categorize linear equations in one variable as having one, none, or infinitely many solutions. Before the lesson, students work individually on an assessment task that is designed to reveal their current understanding and difficulties. The teacher then reviews their responses and creates questions for students to consider when improving their work. After a whole-class introduction, students work in small groups on a collaborative discussion task, categorizing equations based on the number of solutions. Throughout their work, students justify and explain their thinking and reasoning. In the same small groups, students critique the work of others and then discuss as a whole-class what they have learned. In a follow-up lesson, students return to their original task and try to improve their own, individual responses.

Suggested Activities: See the Unit 1 Guide for Math 7 ACC.

Materials: Big Ideas MATH Advanced 2 text: Chapters 1 and 11

Standards Addressed: CCSS-M Clusters 7NS.A, 7.EE.A, 7.EE.B, 8.EE.C

Unit 2: Transformational Geometry

Duration: 24 days

Description:
In **Unit 2**, students study congruency and similarity by experimenting with dilations, rotations, reflections, and translations of geometrical figures. During this unit, students are introduced to similar figures. Students will explore the relationships between interior and exterior angles of triangles and angles formed by parallel lines that are cut by a transversal.

Required Assignment:
Representing and Combining Transformations
This lesson assesses how well students are able to recognize and visualize transformations of 2D shapes, and translate, reflect and rotate shapes, and combine these transformations. Before the lesson, students work individually on an assessment task that is designed to reveal their current understandings and difficulties. The teacher then reviews their work, and creates questions for students to consider in order to improve their solutions. After a whole-class introduction, students work in small groups on a collaborative task. In a whole-class discussion, students review the main mathematical concepts of the lesson. Students return to their original task, and try to improve their own responses.

Suggested Activities: See the Unit 2 Guide for 7 ACC.

Materials: Big Ideas MATH Advanced 2 text: Chapters 2, 12, and 3

Standards Addressed: CCSS-M Clusters 7.G.B, 8.G.A
Unit 3: Linear Equations

Duration: 20 days

Description:
In **Unit 3**, students learn about linear equations in two variables. Students explore concepts of slope and intercepts as they write and graph linear equations in two variables.

Required Assignment:
Defining Lines by Points, Slopes and Equations
This lesson assesses how well students are able to find the slopes and equations of linear graphs defined by pairs of coordinates, calculate the slope and y-intercept of a straight line, and use the slope and y-intercept of a straight line to derive its equation. Before the lesson, students work individually on an assessment task designed to reveal their current understanding. The teacher then reviews their responses and creates questions for students to consider when improving their work. After a whole-class introduction, students work in small groups on a collaborative discussion task, matching cards that describe the same line. Throughout their work, students justify and explain their thinking and reasoning. Students review their work by comparing their matches with those of their peers. In a whole-class discussion, students discuss what they have learned. In a follow-up lesson, students revisit their initial work on the assessment task and work alone on a similar task to the introductory task.

Suggested Activities: See the Unit 3 Guide for 7 ACC.

Materials: Big Ideas MATH Advanced 2 text: Chapter 4

Standards Addressed: CCSS-M Clusters 7.RP.A, 8.F.B, 8.EE.B

Unit 4: Systems of Linear Equations and Functions

Duration: 42 days

Description:
Students extend their knowledge of linear equations to solve systems of linear equations in **Unit 4**. Students also solve systems of linear equations graphically and algebraically through methods of substitution and elimination. Students are then introduced to functions. Students will use equations, tables, and/or graphs to compare properties of functions and distinguish between linear and nonlinear functions.

Required Assignment:
Classifying Solutions to Systems of Equations
This lesson assesses how well students are able to classify solutions to a pair of linear equations by considering their graphical representations, use substitution to complete a table of values for a linear equation, identify a linear equation from a given table of values, and graph and solve linear equations. Before the lesson, students attempt the assessment task individually. The teacher then reviews students’ solutions and formulates questions that will help them improve their work. During the lesson, students work collaboratively in pairs or threes, plotting graphs, completing tables of values and deducing equations. Then, based on the number of common solutions, students link these representations. In a follow-up lesson, students receive your comments on the assessment task and use these to attempt the similar task, approaching it with insights gained from the lesson.
Unit 5: Exponents and Roots

Duration: 29 days

Description:
Students will use properties of exponents to generate equivalent expressions in Unit 5. Students will express very large quantities and very small quantities using scientific notation. Their study of exponents and scientific notation will culminate with students performing operations with numbers written in scientific notation. Students will begin working with square roots and cube roots and will understand how to solve an equation containing a root. Students will apply their knowledge of exponents and roots by using and applying the Pythagorean Theorem.

Required Assignment:
Applying Properties of Exponents
This lesson assesses how well students are able to recall and use the properties of exponents to generate equivalent numeric expressions, identify the appropriate property to use and apply it correctly, and check the numerical value of an expression involving exponents without using a calculator. Before the lesson, students work individually on an assessment task designed to reveal their current understanding. The teacher then reviews their responses and creates questions for students to consider when improving their work. After a whole-class introduction, students work in small groups on a collaborative discussion task, grouping cards based on numerical equivalence. Throughout their work, students justify and explain their thinking and reasoning. Students review their work by comparing their card groupings with their peers'. In a whole-class discussion, students discuss what they have learned. In a follow-up lesson, students revisit their initial work on the assessment task and work alone on a similar task to the introductory task.

Suggested Activities: See the Unit 5 Guide for 7 ACC.

Materials: Big Ideas MATH Advanced 2 text: Chapters 7 and 10

This lesson assesses how well students are able to recognize and use common 2D representations of 3D objects, and identify and use the appropriate formula for finding the circumference of a circle. Before the lesson, students attempt the Designing a Sports Bag task individually. The teacher reviews their work and formulates questions that will help students to improve their solutions. At the start of the lesson, students respond individually to the questions set. Then in groups, they combine their thinking and work together to produce a joint solution in the form of a poster. In the same small groups, students evaluate and comment on sample responses. They identify the strengths and mistakes in these responses and compare them with their own work. In a whole-class discussion, students explain and compare the strategies they have seen and used. Finally, students reflect on their work and their learning.

Suggested Activities: See the Unit 6 Guide for 7 ACC.

Materials: Big Ideas MATH Advanced 2 text: Chapters 13, 14, and 8

Standards Addressed: CCSS-M Clusters 7.G.B, 7.G.C

Unit 7: Probability and Statistics

Duration: 15 days

Description:
In **Unit 7**, students learn to develop, use and evaluate probability models through the study of chance processes. Students continue the development of their understanding of statistical variability. Instead of looking at just one population, they are comparing the variability of two populations. They learn to draw inferences about populations based on random samples.

Required Assignment:
Analyzing Games of Chance

http://map.mathshell.org/lessons.php?unit=7420&collection=8

This lesson is designed to help students to confront and overcome common probability misconceptions, count equally likely outcomes using diagrams, discuss relationships between theoretical probabilities, observed outcomes, and sample sizes, and calculate probabilities of independent events. Before the lesson, students work individually on a task designed to reveal their current level of understanding. The teacher reviews their scripts and writes questions to help them to improve their work. In the lesson, students are asked to work collaboratively on some simple games. They make predictions of the outcomes and then conduct the experiments and gather data. In a follow-up lesson, students use their learning and your questions to review their initial answers and to complete a follow-up task.

Suggested Activities: See the Unit 7 Guide for 7 ACC.

Materials: Big Ideas MATH Advanced 2 text: Chapter 15

Standards Addressed: CCSS-M Clusters 7.SP.A, 7.SP.B, 7.SP.C

INSTRUCTIONAL METHOD AND/OR STRATEGIES:
A variety of instructional strategies will be utilized to accommodate all learning styles. See the “Using Formative Assessment to Address the Specific Learning Needs of Low Achieving Students, High Achieving Students, Students with Disabilities and English Language Learners in K-12 MATHEMATICS” document.
COURSE MATERIALS:
Core Text: Big Ideas MATH Advanced 2, Larson & Boswell, Big Ideas Learning, © 2015
Supplemental Materials: In addition to the basic text, a variety of instructional tools will be used to meet the needs of all students.

RESOURCES:
Documents
- LBUSD Scope and Sequence .. LBUSD Mathematics Webpage
- LBUSD Unit Guides ... LBUSD Mathematics Webpage
- LBUSD Instructional Tools ... LBUSD Mathematics Curriculum Intranet
- Using Formative Assessment for Differentiation....................... LBUSD Math/ELA Curriculum Documents
- Work-Based Learning Continuum ... LBUSD Work-Based Learning Webpage
- ELD Standards ... http://www.cde.ca.gov/sp/el/er/eldstandards.asp

District Offices
- Math Curriculum Office .. (562) 997-8000, ext. 2962
- Research Office ... (562) 997-8143

PERFORMANCE CRITERIA:
Defines how good is good enough on which measures to demonstrate achievement of content standards.

Classroom Performance Standards
The objective of instruction is to help all students achieve at or above the Proficient Level and receive a C or better in the course.

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessments</td>
<td>0 – 59%</td>
<td>60 – 69%</td>
<td>70 – 79%</td>
<td>80 – 89%</td>
<td>90 – 100%</td>
</tr>
<tr>
<td>Unit Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quizzes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classwork</td>
<td>0 – 59%</td>
<td>60 – 69%</td>
<td>70 – 79%</td>
<td>80 – 89%</td>
<td>90 – 100%</td>
</tr>
<tr>
<td>Homework</td>
<td>0 – 59%</td>
<td>60 – 69%</td>
<td>70 – 79%</td>
<td>80 – 89%</td>
<td>90 – 100%</td>
</tr>
</tbody>
</table>

Standard Grading Scale:
- A 90 – 100%
- B 80 – 89%
- C 70 – 79%
- D 60 – 69%
- F 0 – 59%
Suggested Grade Weighting:

1. **Assessment**
 Graded work assessing a student’s mastery of mathematics such as any of the following:
 - Tests (district exams and classroom tests)
 - Quizzes
 - Project work that assesses a student’s understanding
 - Weighting: 60 – 80%

2. **Classwork/Activities**
 Graded work completed in class such as any of the following:
 - In class assignments
 - Project work completed in class
 - Notes
 - Warm-ups
 - Graded participation
 - Weighting: 10 – 25%

3. **Homework**
 Graded work completed outside of class such as any of the following:
 - Assignments
 - Project work completed outside of class
 - Weighting: 5 – 15%

Submitted by: Becky Afghani
Submission Date: August 24, 2015
School/Office: Math Curriculum Office
Original Board Approval Date: November 3, 2015
Revised Board Approval Date: